PDF herunterladen
PDF herunterladen
In der Statistik steht die Spannweite für die Distanz zwischen dem kleinsten und dem größten Wert eines Datensatzes. Die Spannweite gibt einen Hinweis darauf wie weit die Werte in einer Serie streuen. Wenn die Spannweite eine hohe Zahl ist, dann sind die Werte weit gestreut; ist sie klein, dann liegen die Werte nah beisammen. Wenn du wissen willst, wie du die Spannweite berechnest, folge diesen Schritten.
Vorgehensweise
-
Liste die Werte deiner Datenreihe auf. Um die Spannweite einer Datenreihen zu finden, musst du alle einzelnen Elemente auflisten, so dass du den höchsten und den niedrigsten Wert bestimmen kannst. Schreibe alle Elemente auf. Die Elemente unserer Datenreihen sind: 24, 19, 20, 14, 24, 25 und 18.
- Um den höchsten und den niedrigsten Wert zu bestimmen, kann es hilfreich sein die Werte in aufsteigender Reihenfolge anzugeben: 14, 18, 19, 20, 24, 24, 25.
- Die Werte in Reihenfolge aufzuschreiben, kann auch bei anderen Berechnungen helfen. Z.B. beim Berechnen des Modal-, Mittel- oder Medianwertes.
-
Identifiziere den höchsten und den niedrigsten Wert in der Reihe. In diesem Fall ist die niedrigste Zahl die 14 und die höchste die 25.
-
Ziehe die niedrigste Zahl von der höchsten Zahl ab. Nachdem du sie identifiziert hast, musst du sie nur noch von einander subtrahieren. Also subtrahiere 14 von 25: 25 – 24 = 11 = Die Spannweite der Reihe.
-
Kennzeichne die Spannweite klar. Wenn du die Spannweite gefunden hast, kennzeichne sie auch klar und deutlich. Dadurch vermeidest du sie mit anderen stochastischen Berechnungen zu verwechseln, die du eventuell noch für diese Datenreihe machen musst.Werbeanzeige
Tipps
- Der Medianwert eines statistischen Datensatzes steht für die „Mitte“ der Reihe und nicht für ihre Spannweite. Auch wenn es nahe liegend klingt anzunehmen, dass der Median einer Datenreihe durch 2 geteilt die Spannweite ergibt, also die Mitte gleich der Differenz der Extreme ist, ist das nicht immer der Fall. Auch ist die Spannweite x 2 meistens nicht der Median. Um den korrekten Medianwert zu finden, musst du alle Werte in aufsteigender Reihenfolge auflisten und dann genau den Wert in der Mitte nehmen. Dieser Wert ist der Median. Wenn du also 29 Elemente hast und alle in einer Reihenfolge aufgeschrieben hast, ist von beiden Seite der 15te Wert dein Median, ganz egal wie groß dieser Wert im Vergleich zur Spannweite ist (du kannst 28-mal den Wert 1 haben und einmal den Wert 1 Milliarde, dein Median ist trotzdem eine 1, deine Spannweite hingegen …)
- Du kannst die Spannweite auch in algebraischen Ausdrücken darstellen, aber zunächst solltest du das Konzept einer algebraischen Funktion verstehen. Da eine Funktion mit jeder beliebigen Zahl ausgeführt werden kann, auch mit einer unbekannten, wird diese Zahl durch eine Variable dargestellt, normalerweise ein „x“. Der Funktionsbereich (oder einfach nur Bereich) gibt an, welche Zahlen für diese Variable eingesetzt werden dürfen. Die Spannweite einer Funktion ist dann jedes mögliche Resultat das durch den Einsatz jeder möglichen Zahl in die Funktion entstehen kann (also quasi das „von … bis …“ des Ergebnisses einer Funktion). Leider gibt es nicht den „einzigen Weg“ um diese Spannweite für eine Funktion zu berechnen. Manchmal ergibt das Zeichnen einer Funktion oder das Berechnen einiger Werte kein klares Muster. Du kannst auch dein Wissen über den Bereich der Funktion benutzen um mögliche Ergebnisse auszuschließen und den Datensatz für die Spannweite einzugrenzen.
Werbeanzeige
Werbeanzeige