How to Build Your Future
Q&A for How to Determine a Square and Circle of Equal Area
Coming soon
Search
-
QuestionIf area of circle is equal to the area of square, then what is the relation between circumference (c) and perimeter (p) of the square?DonaganTop AnswererThe relationship is that the perimeter of the square is equal to the circumference of the circle multiplied by 1.13. Thus, p = 1.13 c. Here's how that's derived: the circle's area (πr²) is defined as being equal to the square's area (4s), where r is the circle's radius, and s is the square's side. So πr² = s², making s equal to r√π. The square's perimeter is 4s, or 4r√π. You would have to multiply the circumference (2πr) by (2/√π), or 1.13, to get the square's perimeter (4r√π). So the relationship of circumference to perimeter is p = 1.13 c. This is true only when the two areas are equal.
-
QuestionWhat is the area of circle whose radius is the diagonal of a square whose area is 4 cm square?DonaganTop AnswererA square with an area of 4 cm² has sides of 2 cm each and a diagonal of 2√2 cm. A circle whose radius is 2√2 cm has an area of π(2√2)² = 8π = 25.13 cm².
-
QuestionIf area of a square is A, how do I find the area of circle using same perimeter?DonaganTop AnswererIf the square's area is A, each side is √A. So the square's perimeter is 4√A, and so is the circle's circumference. Then the diameter of the circle is its circumference divided by pi, or (4√A) / π, meaning its radius is (2√A) / π. Then the circle's area is πr², or π(2√A / π)² = 4A / π² = (0.405)(A), or (.4A).
-
QuestionWhat is a circle in thirds?DonaganTop AnswererThat may refer to a circle that has been divided into three equal sectors, all of whose central angles are 120°.
-
QuestionIf the side of a square is equal to the area of the circle, how do I find the ratio between the side of the square and the radius of the circle?DonaganTop AnswererThe side of the square is equal to the square of the radius multiplied by pi.
-
QuestionWhat is the GCF of 16 and 12?DonaganTop Answerer16 = (2 x 2) x 2 x 2. 12 = (2 x 2) x 3. Therefore, their greatest common factor is 2 x 2 = 4.
-
QuestionWhat is the relationship of the area of the circle to a square if the circle is inside the square?Community AnswerThe area of the circle is equal to the area of the square multiplied by one-quarter of pi.
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit