PDF download Загрузить PDF PDF download Загрузить PDF

Тригонометрическое уравнение содержит одну или несколько тригонометрических функций переменной «х» (или любой другой переменной). Решение тригонометрического уравнения - это нахождение такого значения «х», которое удовлетворяет функции (функциям) и уравнению в целом.

  • Решения тригонометрических уравнений выражаются в градусах или радианах. Примеры:

х = π/3; х = 5π/6; х = 3π/2; х = 45 градусов; х = 37,12 градусов; х = 178,37 градусов.

  • Примечание: значения тригонометрических функций от углов, выраженных в радианах, и от углов, выраженных в градусах, равны. Тригонометрическая окружность с радиусом, равным единице, служит для описания тригонометрических функций, а также для проверки правильности решения основных тригонометрических уравнений и неравенств.
  • Примеры тригонометрических уравнений:
    • sin x + sin 2x = 1/2; tg x + ctg x = 1,732;
    • cos 3x + sin 2x = cos x; 2sin 2x + cos x = 1 .
  1. Тригонометрическая окружность с радиусом, равным единице (единичная окружность).
    • Это окружность с радиусом, равным единице, и центром в точке O. Единичная окружность описывает 4 основные тригонометрические функции переменной «х», где «х» - угол, отсчитываемый от положительного направления оси Х против часовой стрелки.
    • Если «х» - некоторый угол на единичной окружности, то:
    • Горизонтальная ось OAх определяет функцию F(х) = соs х.
    • Вертикальная ось OВy определяет функцию F(х) = sin х.
    • Вертикальная ось AT определяет функцию F(х) = tg х.
    • Горизонтальная ось BU определяет функцию F(х) = сtg х.
  • Единичная окружность также применяется при решении основных тригонометрических уравнений и неравенств (на ней рассматриваются различные положения «х»).
    • Для решения тригонометрического уравнения преобразуйте его в одно или несколько основных тригонометрических уравнений. Решение тригонометрического уравнения в конечном итоге сводится к решению четырех основных тригонометрических уравнений.
    • Существуют 4 вида основных тригонометрических уравнений:
    • sin x = a; cos x = a
    • tg x = a; ctg x = a
    • Решение основных тригонометрических уравнений подразумевает рассмотрение различных положений «х» на единичной окружности, а также использование таблицы преобразования (или калькулятора).
    • Пример 1. sin x = 0,866. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = π/3. Единичная окружность дает еще один ответ: 2π/3. Запомните: все тригонометрические функции являются периодическими, то есть их значения повторяются. Например, периодичность sin x и cos x равна 2πn, а периодичность tg x и ctg x равна πn. Поэтому ответ записывается следующим образом:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Пример 2. соs х = -1/2. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = 2π/3. Единичная окружность дает еще один ответ: -2π/3.
    • x1 = 2π/3 + 2π; х2 = -2π/3 + 2π.
    • Пример 3. tg (x - π/4) = 0.
    • Ответ: х = π/4 + πn.
    • Пример 4. ctg 2x = 1,732.
    • Ответ: х = π/12 + πn.
  1. Преобразования, используемые при решении тригонометрических уравнений.
    • Для преобразования тригонометрических уравнений используются алгебраические преобразования (разложение на множители, приведение однородных членов и т.д.) и тригонометрические тождества.
    • Пример 5. Используя тригонометрические тождества, уравнение sin x + sin 2x + sin 3x = 0 преобразуется в уравнение 4cos x*sin (3x/2)*cos (x/2) = 0. Таким образом, нужно решить следующие основные тригонометрические уравнения: cos x = 0; sin (3x/2) = 0; cos (x/2) = 0.

    • Перед изучением методов решения тригонометрических уравнений вам необходимо научиться находить углы по известным значениям функций. Это можно сделать при помощи таблицы преобразования или калькулятора.
    • Пример: соs х = 0,732. Калькулятор даст ответ х = 42,95 градусов. Единичная окружность даст дополнительные углы, косинус которых также равен 0,732.
    • Вы можете отложить решения тригонометрического уравнения на единичной окружности. Решения тригонометрического уравнения на единичной окружности представляют собой вершины правильного многоугольника.
    • Пример: Решения x = π/3 + πn/2 на единичной окружности представляют собой вершины квадрата.
    • Пример: Решения x = π/4 + πn/3 на единичной окружности представляют собой вершины правильного шестиугольника.
    • Если данное тригонометрическое уравнение содержит только одну тригонометрическую функцию, решите это уравнение как основное тригонометрическое уравнение. Если данное уравнение включает две или более тригонометрические функции, то существуют 2 метода решения такого уравнения (в зависимости от возможности его преобразования).
      • Метод 1.
    • Преобразуйте данное уравнение в уравнение вида: f(x)*g(x)*h(x) = 0, где f(x), g(x), h(x) - основные тригонометрические уравнения.

    • Пример 6. 2cos x + sin 2x = 0. (0 < x < 2π)
    • Решение. Используя формулу двойного угла sin 2x = 2*sin х*соs х, замените sin 2x.
    • 2соs х + 2*sin х*соs х = 2cos х*(sin х + 1) = 0. Теперь решите два основных тригонометрических уравнения: соs х = 0 и (sin х + 1) = 0.
    • Пример 7. cos x + cos 2x + cos 3x = 0. (0 < x < 2π)
    • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: cos 2x(2cos x + 1 ) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2cos x + 1) = 0.
    • Пример 8. sin x - sin 3x = cos 2x . (0 < x < 2π)
    • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: -cos 2x*(2sin x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2sin x + 1) = 0.
      • Метод 2.
    • Преобразуйте данное тригонометрическое уравнение в уравнение, содержащее только одну тригонометрическую функцию. Затем замените эту тригонометрическую функцию на некоторую неизвестную, например, t (sin x = t; cos x = t; cos 2x = t, tg x = t; tg (x/2) = t и т.д.).
    • Пример 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0 < x < 2π).
    • Решение. В данном уравнении замените (cos^2 x) на (1 - sin^2 x) (согласно тождеству). Преобразованное уравнение имеет вид:
    • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Замените sin х на t. Теперь уравнение имеет вид: 5t^2 - 4t - 9 = 0. Это квадратное уравнение, имеющее два корня: t1 = -1 и t2 = 9/5. Второй корень t2 не удовлетворяет области значений функции (-1 < sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
    • Пример 10. tg x + 2 tg^2 x = ctg x + 2
    • Решение. Замените tg x на t. Перепишите исходное уравнение в следующем виде: (2t + 1)(t^2 - 1) = 0. Теперь найдите t, а затем найдите х для t = tg х.
    • Есть несколько особых тригонометрических уравнений, которые требуют конкретных преобразований. Примеры:
    • a*sin x+ b*cos x = c ; a(sin x + cos x) + b*cos x*sin x = c;
    • a*sin^2 x + b*sin x*cos x + c*cos^2 x = 0
    • Как упоминалось ранее, все тригонометрические функции являются периодическими, то есть их значения повторяются через определенный период. Примеры:
      • Период функции f(x) = sin x равен 2π.
      • Период функции f(x) = tg x равен π.
      • Период функции f(x) = sin 2x равен π.
      • Период функции f(x) = cos (x/2) равен 4π.
    • Если период указан в задаче, вычислите значение «х» в пределах этого периода.
    • Примечание: решение тригонометрических уравнений – непростая задача, которая часто приводит к ошибкам. Поэтому тщательно проверяйте ответы. Для этого можно использовать графический калькулятор, чтобы построить график данного уравнения R(х) = 0. В таких случаях решения будут представлены в виде десятичных дробей (то есть π заменяется на 3,14).
    Реклама

Об этой статье

Эту страницу просматривали 123 509 раз.

Была ли эта статья полезной?

Реклама