wikiHow Completing the Square Practice Answers 1. (x + 3)^2 - 17 = 0; x = -3 ± √17 2. (x + 3)^2 - 2 = 0; x = -3 ± √2 3. (x - 3/2)^2 - 13/4 = 0; x = 3/2 ± √(13/4) 4. (x - 1)^2 - 16 = 0; x = 1 ± 4√2 5. (x + 2)^2 - 11/5 = 0; x = -2 ± √(11/5) 6. (x - 1)^2 + 2 = 0; no real solutions 7. 2(x + 1)^2 - 8 = 0; x = -1 ± √2 8. 3(x - 1)^2 - 28 = 0; x = 1 ± 2√7/3 9. 4(x + 1/2)^2 - 19/4 = 0; x = -1/2 ± √19/4 10. 5(x - 3)^2 + 71 = 0; no real solutions 11. (x + 1)^2 - 6 = 0; x = -1 ± √6 12. 2(x - 2)^2 + 3 = 0; x = 2 ± √(3/2) 13. 3(x + 1)^2 - 11 = 0; x = -1 ± √(11/3) 14. (2x - 4)^2 - 7 = 0; x = 1 ± √(7/8) 15. (x - 1/5)^2 - 16/25 = 0; x = 1/5 ± 4/5 16. (x + 4)^2 - 4 = 0; x = -4 ± 2 17. 2(x - 1)^2 - 9 = 0; x = 1 ± 3/√2 18. 3(x + 3/2)^2 - 13/4 = 0; x = -3/2 ± √(13/12) 19. (2x - 5)^2 - 15/4 = 0; x = 5/2 ± √(15/8) 20. (1/5)(2x + 1)^2 - 9/5 = 0; x = -1/2 ± √(9/10) Note that completing the square is one way to solve quadratic equations, and there may be other methods that yield different answers. Page
Design a Mobile Website
View Site in Mobile | Classic
Share by: