wikiHow
Completing the Square Practice Answers
1. (x + 3)^2 - 17 = 0; x = -3 ± √17
2. (x + 3)^2 - 2 = 0; x = -3 ± √2
3. (x - 3/2)^2 - 13/4 = 0; x = 3/2 ± √(13/4)
4. (x - 1)^2 - 16 = 0; x = 1 ± 4√2
5. (x + 2)^2 - 11/5 = 0; x = -2 ± √(11/5)
6. (x - 1)^2 + 2 = 0; no real solutions
7. 2(x + 1)^2 - 8 = 0; x = -1 ± √2
8. 3(x - 1)^2 - 28 = 0; x = 1 ± 2√7/3
9. 4(x + 1/2)^2 - 19/4 = 0; x = -1/2 ± √19/4
10. 5(x - 3)^2 + 71 = 0; no real solutions
11. (x + 1)^2 - 6 = 0; x = -1 ± √6
12. 2(x - 2)^2 + 3 = 0; x = 2 ± √(3/2)
13. 3(x + 1)^2 - 11 = 0; x = -1 ± √(11/3)
14. (2x - 4)^2 - 7 = 0; x = 1 ± √(7/8)
15. (x - 1/5)^2 - 16/25 = 0; x = 1/5 ± 4/5
16. (x + 4)^2 - 4 = 0; x = -4 ± 2
17. 2(x - 1)^2 - 9 = 0; x = 1 ± 3/√2
18. 3(x + 3/2)^2 - 13/4 = 0; x = -3/2 ± √(13/12)
19. (2x - 5)^2 - 15/4 = 0; x = 5/2 ± √(15/8)
20. (1/5)(2x + 1)^2 - 9/5 = 0; x = -1/2 ± √(9/10)
Note that completing the square is one way to solve quadratic equations, and there may be other methods that yield different answers.
Page