PDF download PDF herunterladen PDF download PDF herunterladen

Ein Wurzelterm ist ein algebraischer Ausdruck der ein Wurzelzeichen enthält. Dabei kann es sich um eine Quadratwurzel, eine Kubikwurzel oder um eine beliebige andere Wurzel handeln. Das Vereinfachen von Wurzeltermen kann dir beim Lösen einer Gleichung helfen. Das Vereinfachen von Wurzeltermen bedeutet das Umformen des Ausdrucks so dass keine Wurzel mehr vorkommt (wenn möglich) oder die Zahl unter dem Wurzelzeichen so weit wie möglich zu verkleinern. Wenn du wissen willst wie man Wurzelterme auf verschiedene Arten vereinfachen kann, folge dieser Anleitung.

Methode 1
Methode 1 von 5:

Quadratzahlen

PDF download PDF herunterladen
  1. Eine Quadratzahl ist das Produkt einer Zahl, die mit sich selbst multipliziert wird, zum Beispiel 81, die das Produkt von 9 x 9 ist. Um einen Wurzelterm mit einer Quadratzahl zu vereinfachen lasse einfach das Wurzelzeichen weg und schreibe stattdessen einfach die Quadratwurzel der Quadratzahl hin.
    • 121 ist zum Beispiel eine Quadratzahl, denn 11 x 11 ist 121. Du kannst das Wurzelzeichen einfach weglassen und als Ergebnis 11 hinschreiben.
    • Um diesen Prozess zu vereinfachen, solltest du die ersten zwölf Quadratzahlen auswendig lernen: 1 x 1 = 1, 2 x 2 = 4, 3 x 3 = 9, 4 x 4 = 16, 5 x 5 = 25, 6 x 6 = 36, 7 x 7 = 49, 8 x 8 = 64, 9 x 9 = 81, 10 x 10 = 100, 11 x 11 = 121, 12 x 12 = 144
    Werbeanzeige
Methode 2
Methode 2 von 5:

Dritte Potenzen

PDF download PDF herunterladen
  1. Eine dritte Potenz ist eine Zahl die zweimal mit sich selbst multipliziert wurde, zum Beispiel 27, die das Produkt von 3 x 3 x 3 ist. Um einen Wurzelterm zu vereinfachen bei dem eine dritte Potent unter einer dritten Wurzel steht lasse einfach das Wurzelzeichen weg und schreibe stattdessen die dritte Wurzel aus der Zahl, die eine dritte Potenz ist, hin.
    • 512 ist zum Beispiel eine dritte Potenz, denn sie ist das Produkt von 8 x 8 x 8. Deshalb ist die dritte Wurzel von 512 einfach 8.
Methode 3
Methode 3 von 5:

Wurzelziehen von nicht-Quadratzahlen

PDF download PDF herunterladen
  1. Faktoren sind die Zahlen, die ausmultipliziert wieder die ursprüngliche Zahl ergeben -- zum Beispiel sind 5 und 4 zwei Faktoren der Zahl 20. Um die Zahl unter dem Wurzelzeichen in Faktoren zu zerlegen schreibe alle Teiler dieser Zahl (oder alle die dir einfallen, wenn es eine große Zahl ist) auf bis du eine Quadratzahl findest.
    • Versuche zum Beispiel alle Teiler von 45 auf zu schreiben: 1, 3, 5, 9, 15 und 45. 9 ist ein Teiler von 45 und ist eine Quadratzahl. 9 x 5 = 45.
  2. 9 ist eine Quadratzahl, denn sie ist das Produkt von 3 x 3. Ziehe 9 aus der Wurzel heraus und schreibe 3 vor die Wurzel. Wenn du die 3 wieder unter die Wurzel schreiben willst, dann wird sie wieder mit sich selbst multipliziert und ergibt wieder 9, die mit 5 multipliziert wieder 45 ergibt. 3 mal Wurzel aus 5 ist ein vereinfachter Ausdruck für Wurzel aus 45.
    Werbeanzeige
Methode 5
Methode 5 von 5:

Wurzelterme mit Variablen und Zahlen

PDF download PDF herunterladen
  1. Suche zuerst nach Quadraten in den Zahlen und dann nach Quadraten in den Variablen. Lasse dann das Wurzelzeichen weg und schreibe stattdessen die Wurzeln aus den Zahlen und Variablen hin. Betrachten wir einmal den Term Wurzel aus 36 mal a 2 .
    • 36 ist eine Quadratzahl, denn 6 x 6 ist 36.

    • a 2 ist ein Quadrat aus a mal a .
    • Nachdem wir die Zahlen und Variablen in ihre Quadratwurzeln zerlegt haben können wir das Wurzelzeichen weglassen und lassen nur die Quadratwurzeln stehen. Die Wurzel aus 36 mal a 2 ist 6 a.
  2. Zerlege den Ausdruck in Zahlen und Variablen und suche nach Quadraten unter den Teilern. Ziehe dann alle Quadrate aus der Wurzel heraus. Probieren wir einmal, was wir mit der Wurzel aus 50 mal a 3 machen können.
    • Zerlege 50 in Faktoren, die Quadratzahlen sind. 25 x 2 = 50 und 25 ist eine Quadratzahl, denn 5 x 5 = 25. Um die Wurzel aus 50 zu vereinfachen können wir 5 aus der Wurzel ziehen und lassen die 2 darunter stehen.
    • Zerlege "a" 3 um Quadrate zu finden. a 3 ist eigentlich a 2 mal a und a 2 ist ein Quadrat. Wir können ein a aus der Wurzel ziehen und lassen ein a unter der Wurzel stehen. Deshalb ist die Wurzel aus a 3 eigentlich a Wurzel aus a .
    • Setze alles zusammen. Schreibe alles, was du aus der Wurzel gezogen hast, davor, und lasse alles, was du darunter gelassen hast, darunter. Fasse 5 Wurzel aus 2 und a Wurzel aus a zusammen zu 5 mal a Wurzel aus 2 mal a.
    Werbeanzeige

Tipps

  • Es gibt Webseiten, die du bei einer Online-Suche finden kannst, die Wurzelterme vereinfachen können. Du brauchst nur den Ausdruck unter dem Wurzelzeichen einzutippen, und nachdem du auf "Eingabe" gedrückt hast erscheint der vereinfachte Ausdruck.
Werbeanzeige

Über dieses wikiHow

Diese Seite wurde bisher 161.715 mal abgerufen.

War dieser Artikel hilfreich?

Werbeanzeige