PDF download Baixe em PDF PDF download Baixe em PDF

Uma das etapas mais importantes ao planejar uma construção ou reforma é determinar quanto material será necessário. Para muitos projetos, isso significa calcular os metros lineares , pois muitos dos materiais de construção comuns, como madeira e aço, por exemplo, são vendidos e medidos pelo metro. Além disso, com as medidas corretas, os valores de metros lineares podem ser facilmente extrapolados para metros quadrados e cúbicos . Portanto, descobrir como encontrar os metros lineares de material necessários para um projeto é uma habilidade essencial para qualquer especialista em reformas.

Método 1
Método 1 de 2:

Encontrando os metros lineares de um material em um projeto

PDF download Baixe em PDF
  1. Todos os projetos de construção e a grande maioria das reformas envolvem montar matérias-primas separadas para formar um todo. De modo a ser capaz de determinar quantos metros lineares de cada tipo de material seu projeto precisará, primeiro será necessário dividir tudo em categorias, agrupando os materiais idênticos uns com os outros.
    • Como exemplo, vamos fingir que estamos planejando um projeto relativamente simples: construir uma estante. Digamos que os lados sejam feitos de tábuas de madeira de 5 x 10 e que o topo, a base e as três prateleiras do meio sejam de tábuas de 2,5 por 30. Nesse caso, dividiríamos nossos materiais de construção em duas categorias: tábuas de 5 x 10 e tábuas de 2,5 x 30 .
  2. Quando souber que materiais usará no seu projeto, meça o comprimento de cada peça individual. Como estamos lidando com metros lineares , e não quadrados, por exemplo, não precisamos nos preocupar com a espessura ou com a largura dos materiais. Tome cuidado para não medir as mesmas peças várias vezes; fazer um esquema do projeto e rotular cada peça com seu comprimento pode ajudar.
    • No nosso exemplo, digamos que as tábuas de 5 x 10 que estamos usando para as laterais da estante meçam 2,4 metros e que as placas de 2,5 x 12 meçam 1,8 metro .
  3. O próximo passo é somar os comprimentos de peças individuais feitas do mesmo elemento para encontrar um valor de comprimento total para cada material. Esse valor representa o comprimento de material que você precisa comprar em uma peça só para seu projeto e cortar em pedaços menores, conforme a necessidade. Caso o seu projeto contenha várias peças do mesmo material com comprimentos iguais, economize tempo multiplicando o comprimento de uma dessas peças pela quantidade delas.
    • No nosso exemplo, como temos duas peças laterais de 2,4 m feitas de tábuas de 5 x 10 e cinco peças feitas de tábuas de 2,5 x 30 (as três prateleiras, mais o topo e a base), podemos descobrir os totais multiplicando dessa forma:
      • Tábuas de 5 x 10: 2,4 x 2 = 4,8 metros
      • Tábuas de 2,5 x 30: 1,8 x 5 = 9 metros
  4. Quando souber quanto de cada material precisará para seu projeto, saberá quanto precisará comprar . Encontre o preço por metro de cada tipo de material e multiplique pelo total de metros lineares obtidos para encontrar o custo aproximado.
    • No nosso exemplo, precisamos de 4,8 m de tábuas 5 x 10 e de 9 m de tábuas 2,5 x 30. Digamos que a primeira custe R$1,50 por metro e a segunda R$2,25 por metro. Nesse caso, determinaríamos os custos desses materiais multiplicando da seguinte maneira:
      • Tábuas de 5 x 10: 1,5 x 4,8 = R$7,20
      • Tábuas de 2,5 x 30: 2,25 x 9 = R$20,25
  5. Nem todos os materiais de construção são vendidos em metros lineares; alguns usam unidades de medida diferentes, enquanto outros são vendidos em unidades que não são de comprimento (como unidades de área, volume, etc). Se os seus materiais forem vendidos em outra unidade de comprimento, converta os metros lineares para essa nova unidade antes de calcular os preços. Geralmente, é só multiplicar ou dividir por uma constante. Abaixo estão instruções de como converter metros para várias outras unidades de comprimento comuns: [1]
    • Metros para centímetros: multiplique por 100
    • Metros para pés: multiplique por 3,2
    • Metros para polegadas: multiplique por 40
    • Pés para jardas: como 1 jarda = 1,09 metro, a medida é praticamente a mesma
  6. Quando se trata de projetos, uma das dicas mais comuns é comprar sempre um pouco mais de material do que você acha que vai precisar. Assim, você terá um "espaço de manobra" para caso cometa erros nos cálculos ou durante o projeto. Embora o preço dos seus materiais acabe aumentando um pouco dessa maneira, geralmente é uma ideia inteligente, pois elimina o trabalho de ter que correr de volta para a loja se ficar sem materiais no meio do projeto. Além disso, os materiais extras podem ser guardados para projetos futuros.
    • No nosso exemplo, nós calculamos que precisaremos de cerca de 4,8 m de tábuas de 5 x 10 e de 9 m de tábuas de 2,5 x 30. Por segurança, pode ser melhor comprar 6 m e 10,5 m , respectivamente. Se tivermos sobras, podemos usá-las para colocar divisórias verticais em algumas prateleiras.
    Publicidade
Método 2
Método 2 de 2:

Usando os metros lineares para encontrar outros valores

PDF download Baixe em PDF
  1. Depois que souber o comprimento de todos os materiais de que precisa para seu projeto, você pode usar essa informação para fazer outros cálculos relacionados. Por exemplo, como a área bidimensional de um espaço retangular é comprimento vezes largura, você pode usar as medidas de comprimento dos materiais que formam retângulos para encontrar a área do objeto formado por eles. Nesse caso, você só precisa multiplicar os comprimentos. Note que, para obter os valores para calcular a área de maneira correta, algumas medidas extras podem ser necessárias.
    • Voltemos para o exemplo acima. Vamos dizer que queremos cobrir toda a parte de trás de nossa estante com madeira aglomerada que, para nossos propósitos, é medida por metro quadrado, em vez de linear . Nesse caso, como as laterais da estante têm 2,4 m de altura e as partes de cima e de baixo têm 1,8 m de comprimento, pode parecer que precisamos multiplicar 2,4 por 1,8 para obter a resposta. No entanto , esse resultado não leva em conta a espessura das placas de 5 x 10 usadas como laterais da estante e que fazem com que o móvel tenha um pouco mais do que 1,8 m de largura.
    • Digamos que, depois de medir, descobrimos que as placas de 5 x 10 têm 5 cm de espessura. Já que a estante tem duas placas laterais, essa medida tem cerca de 10 cm, ou um décimo de metro mais largo do que 1,8 m. Assim, para encontrar a área da placa que precisamos, multiplicaremos como a seguir:
      • 2,4 x 1,9 = 4,56 metros quadrados
  2. Nem todos os projetos lidarão somente com retângulos: várias outras formas são possíveis. Se você encontrar uma forma simples como, por exemplo, um círculo ou um triângulo, você pode apenas colocar um valor fácil de obter numa equação específica para obter valores para a área da forma. Desde que suas medidas estejam todas em metros, sua resposta estará em metros quadrados. Abaixo estão algumas equações de área para certas formas comuns: [2]
    • Círculo: π(r) 2 — r é a distância do centro do círculo até sua borda (o raio).
    • Triângulo: (hb)/2 — b ("base") é o comprimento de um dos lados e h ("altura") é o comprimento da linha do ponto oposto que encontra a base em um ângulo reto.
    • Quadrado: l 2 — l é o comprimento de um dos lados.
    • Trapézio: (1/2)(a + b)(h) — a e b são os comprimentos de dois lados paralelos, e h é a distância entre eles.
  3. Alguns projetos usarão formas bidimensionais para as quais não há uma equação de área simples disponível. Nesses casos, tente quebrar as formas irregulares em várias formas regulares menores com áreas que possam ser calculadas por equações simples. Em alguns casos, pode ser necessário dividir os resultados de uma equação para acomodar o fato de que apenas uma parte de certa forma está sendo usada.
    • Voltando para nosso exemplo, vamos dizer que, além de somar o aglomerado à parte de trás da estante, queremos colocar um semicírculo de 0,9 m do mesmo material no topo do móvel para pôr um relógio em cima dele. Não há uma equação simples para encontrar a área de um retângulo com um semicírculo saindo do topo, mas nesse caso, podemos usar o valor que já temos para a parte de trás retangular e somar metade da área de um círculo de 0,9 m de raio para determinar nosso total, como abaixo:
      • 4,56 + (1/2)(π(0,45) 2 ) = 4,56 + (1/2)(1,41) = 5,26 metros quadrados
  4. Alguns projetos pedirão a você o volume de um espaço tridimensional. Como o volume é o comprimento vezes a largura vezes a profundidade, o volume de um objeto ou espaço em formato de caixa pode ser encontrado usando os comprimentos de seus materiais para determinar essas dimensões e multiplicar. Como foi dito acima, algumas medidas extras podem ser necessárias.
    • Digamos que, no nosso exemplo, precisemos determinar o volume tridimensional aproximado da nossa estante. Nós já sabemos a altura e a largura dela, portanto mediremos qual a profundidade das prateleiras e obteremos uma medida de 0,9 m. Com essas três medidas, podemos encontrar o volume apenas multiplicando as dimensões como a seguir:
    • 2,4 × 1,9 × 0,9 = 4,1 metros cúbicos
    Publicidade

Fórmulas comuns para determinar a área

  • Formas retangulares ou quadradas: comprimento x largura
  • Triângulos não equiláteros: (comprimento x largura)/2
  • Triângulos equiláteros: raiz quadrada de 3 dividida por 4 e multiplicada pelo comprimento de um dos lados ao quadrado
  • Elipse (forma circular): raio do comprimento x raio da largura x pi

Dicas

  • Os vendedores já terão determinado o comprimento, a largura e a medida em metros de seu material. Preste atenção nas etiquetas.
  • Lembre-se de que a madeira de construção é denotada em medidas aproximadas que podem variar dependendo do local de compra.
Publicidade

Sobre este guia wikiHow

Esta página foi acessada 202 625 vezes.

Este artigo foi útil?

Publicidade