PDF download Baixe em PDF PDF download Baixe em PDF

A maioria das pessoas já se familiarizou com a leitura de uma reta numérica ou de dados em um gráfico. Entretanto, sob certas circunstâncias, a escala padrão talvez não seja tão útil. Se os dados aumentam ou diminuem exponencialmente, você precisa usar o que é chamada de escala logarítmica. Por exemplo, um gráfico contendo o número de hambúrgueres vendidos no McDonald's ao longo do tempo começaria em milhão em , passando para milhões um ano depois, avançando para milhões, para bilhão (em menos de uma década) e finalmente para bilhões em . [1] Esses dados seriam amplos demais para um gráfico convencional, mas são fáceis de expressar na escala logarítmica. É preciso entender que se trata de um sistema diferente de exibir números, uma vez que não estarão espaçados de forma equidistante como na escala padrão. Ao saber como ler a escala logarítmica, você conseguirá melhor interpretar e representar dados em formato gráfico.

Método 1
Método 1 de 2:

Lendo os eixos do gráfico

PDF download Baixe em PDF
  1. Gráficos representando dados com crescimento rápido podem usar qualquer desses formatos, sendo que a diferença em ambos os eixos ( e ) usarem a escala logarítmica ou apenas um deles. [2] A escolha dependerá de quantos detalhes você quer exibir em seu gráfico: se os valores em um ou outro eixo crescem ou decrescem de forma exponencial, pode ser útil optar pela escala logarítmica nesse caso.
    • A escala logarítmica (ou apenas "log") tem uma grade com linhas espaçadas assimetricamente, enquanto a escala padrão faz uso de uma divisão equidistante. Alguns dados precisam ser representados no papel pautado tradicional, outros em gráficos semi-log e outros em gráficos log-log.
    • O gráfico de (ou de qualquer outra função incluindo um radical), por exemplo, pode ser representado de forma tradicional, semi-log ou log-log. No gráfico tradicional, a função aparece como sendo uma parábola lateral, mas os detalhes de números muito pequenos acaba perdendo a visibilidade. No gráfico log-log, a mesma função aparece como uma linha reta, de modo que os valores ficam mais espalhados para a visualização de mais detalhes. [3]
    • Se ambas as variáveis no estudo incluem grandes amplitudes de dado, você provavelmente terá que usar o gráfico log-log. O estudo de efeitos evolutivos, por exemplo, pode ser analisado em milhares ou milhões de anos, e uma escala logarítmica será muito útil no eixo . Dependendo do item a ser avaliado, pode ser necessário optar pela escala log-log.
  2. Em um gráfico logarítmico, as marcas igualmente espaçadas representam as potências de sua base de trabalho. Tradicionalmente, logaritmos usarão a base ou a base , no caso do logaritmo natural.
    • é uma constante matemática bastante útil ao se lidar com juros compostos e outros cálculos avançados. Seu valor equivale a . [4] O presente artigo manterá seu foco nos logaritmos de base , mas a leitura do logaritmo natural opera seguindo o mesmo caminho.
    • Logaritmos padrões usam a base . Em vez de contar , , , , ou , , , , ou outra forma de espaçamento equidistante, a escala logarítmica avançará em potências de . Os pontos principais no eixo, desse modo, serão , , , e assim por diante. [5]
    • Cada uma das principais divisões, geralmente representadas em um papel logarítmico com linha mais escura, será denominada um "ciclo". Ao se utilizar especificamente a base , você talvez se depare com o termo "década" em uso por conta da nova potência de .
  3. Caso esteja usando papel gráfico logarítmico, você observará que os intervalos entre cada unidade têm espaçamento distinto. A marca , por exemplo, estaria colocada em aproximadamente um terço do caminho entre e . [6]
    • As marcas menores se baseiam no logaritmo de cada número. Por isso, se o for a primeira marcação da escala e a segunda, os demais acompanharão da seguinte maneira:
    • Em potências mais elevadas de , os intervalos menores estarão espaçados à mesma proporção. Desse modo, o espaçamento entre os valores , , , será igual ao espaçamento entre os valores , , , ou , , , .
    Publicidade
Método 2
Método 2 de 2:

Representando pontos em uma escala logarítmica

PDF download Baixe em PDF
  1. Para a explicação abaixo, o foco estará em um gráfico semi-log, com uma escala padrão no eixo e uma escala logarítmica no eixo . É possível, no entanto, que você queira invertê-las com base na forma como deseja exibir os dados. A inversão de eixos tem como efeito visual a rotação do gráfico em ° e pode às vezes facilitar a leitura em uma ou outra direção. Além disso, você talvez queira usar a escala logarítmica para espalhar mais alguns dos dados e deixar esses detalhes mais visíveis. [7]
  2. Ele representará a variável independente, ou aquela que você pode controlar em uma medição ou experiência. Essa variável, por sua vez, não é afetada pelas outras presentes no estudo. Alguns exemplos de variáveis independentes podem ser: [8]
    • Data;
    • Hora;
    • Idade;
    • Medicamento administrado.
  3. Ela será útil para representar dados com mudanças extremamente rápidas. O gráfico padrão é utilizado em dados com crescimento positivo ou negativo em taxa linear. O gráfico logarítmico, por sua vez, é usado para dados com crescimento exponencial. Amostras dessa natureza seriam:
    • Crescimento populacional;
    • Taxa de consumo de um produto;
    • Juros compostos.
  4. Revise os dados e decida como o eixo será marcado. Se as medidas estiverem, por exemplo, na casa dos milhões e bilhões, é provavelmente desnecessário começar o seu gráfico no marco . O ciclo mais baixo poderia estar rotulado como , seguido pelos ciclos , , e assim por diante.
  5. Para representar o primeiro (ou qualquer outro) dado, você começa encontrando sua posição ao longo do eixo . Essa pode ser uma escala incremental, como na reta numérica que conta , , e assim por diante. Pode ser que se trate de rótulos definidos por você, como datas ou meses do ano em que certas medições são tomadas.
  6. É preciso encontrar a posição correspondente no eixo quanto aos dados a serem apresentados. Lembre-se de que, como você está lidando com uma escala logarítmica, as marcas de maior grau serão potências de e as marcas de menor grau serão medições entre elas, representando as subdivisões. Em um exemplo, entre (um milhão) e (dez milhões), as linhas representam divisões de s. [9]
    • O número , por exemplo, estaria expresso na quarta marcação menor acima de . Mesmo que, em uma escala linear, esse valor esteja abaixo da metade entre e , por conta da escala logarítmica ele parece estar ligeiramente acima da metade.
    • É importante notar que intervalos maiores e mais próximos do limite superior ficam comprimidos entre si. Isso ocorre devido à natureza matemática da escala logarítmica.
  7. Continue repetindo os passos anteriores com todos os valores a serem expressos em seu gráfico. Para cada um deles, encontre primeiro sua posição no eixo e avance para determinar sua posição na escala logarítmica do eixo .
    Publicidade

Avisos

  • Ao ler dados de uma escala logarítmica, é importante saber qual base está sendo utilizada. Valores analisados na base serão representados de forma muito distinta daqueles avaliados na escala logarítmica natural, com base .
Publicidade

Sobre este guia wikiHow

Esta página foi acessada 37 104 vezes.

Este artigo foi útil?

Publicidade