Baixe em PDF
Baixe em PDF
Uma equação de segundo grau, ou quadrática, é aquela que contém apenas uma variável e na qual a potência mais elevada é igual a 2. Há três formas principais de resolver equações de segundo grau: 1) fatorá-la quando possível, 2) usar a fórmula quadrática ou 3) completar o quadrado. Se você quer aprender a dominar esses três métodos, siga os passos abaixo.
Passos
-
Combine todos os termos próximos e passe-os para um lado da equação. O primeiro passo ao se fatorar uma equação é passar todos os termos para um lado, mantendo positivo. Para combinar os termos, some ou subtraia os e as constantes (números), passando-os para um lado da equação para que nada reste do outro. Uma vez que esse lado não contenha termos restantes, escreva apenas "0". Aqui está como fazê-lo: [1] X Fonte de pesquisa
-
Fatore a expressão. Para isso, você precisa usar os fatores do termo quando igual a (3), e os fatores do termo constante (-4), para multiplicá-los e somar o termo médio (-11). Para isso:
- Uma vez que tem um conjunto de fatores possíveis, e , você pode escrevê-los entre parênteses: .
- A seguir, use o processo de eliminação para inserir os fatores de 4 a fim de encontrar uma combinação que produza -11x, quando multiplicada. Você pode combinar 4 e 1 ou 2 e 2, já que ambos os números se multiplicam para chegar a 4. Lembre-se apenas de que um dos termos deve ser negativo, uma vez que se trata de -4.
- Por tentativa e erro, experimente a combinação de fatores . Ao multiplicá-los, você obterá . Se combinar os termos e , você obterá , o termo médio que estava buscando. A equação quadrática acaba de ser fatorada.
- Como exemplo de tentativa e erro, tentemos conferir uma combinação para que seja errada (não funcionará): . Se combinar os termos, você obterá . Apesar dos fatores -2 e 2 se multiplicarem para chegar em -4, o termo médio não é correto, pois o resultado deve ser , não .
-
Defina cada conjunto de parênteses igual a zero como equações separadas. Dessa forma, você encontrará dois valores para que igualam toda a equação a zero, . Agora que a equação foi fatorada, tudo o que você precisa fazer é aplicar a expressão em cada um dos parênteses como sendo igual a zero. Por quê? Porque, para se chegar a zero em uma multiplicação, tem-se como "princípio, regra ou propriedade geral" que um dos fatores deve ser zero, de modo que pelo menos um dos fatores entre parênteses em deve ser igual a zero. Por isso, ou devem se igualar a zero. Para descobrir, você deve calcular e .
-
Resolva cada equação "zerada" de forma independente. Em uma equação quadrática, haverá dois valores possíveis para x. Encontre-o para cada possibilidade de x, uma a uma, isolando a variável e escrevendo as duas soluções como sendo finais. Aprenda aqui como fazê-lo:
- Resolva
:
- , subtraindo;
- , dividindo;
- , simplificando.
- Resolva
:
- , subtraindo.
- , fazendo um conjunto de soluções possíveis e separadas, de modo que tanto quanto estão corretas.
- Resolva
:
-
Confira em .
- Considera-se que , que é substituído por , simplificado para e multiplicado para . Conclui-se, portanto, que é funcional.
-
Analise em .
- Tem-se que , que é substituído por , simplificado para e multiplicado para . Sim, é válido.
- Desse modo, ambas as soluções servem, separadamente, e ambas foram verificadas como funcionais e corretas para as duas soluções diferentes.
Publicidade
-
Combine todos os termos semelhantes e passe-os para um lado da equação. Mova-os para um lado da igualdade, mantendo o positivo. Escreva-os em ordem descendente de potência, de modo que venha em primeiro lugar, seguido por e pela constante. Aprenda aqui como fazê-lo:
-
Escreva a fórmula quadrática. Essa fórmula, também conhecida como a fórmula de Bháskara, é . [2] X Fonte de pesquisa
-
Identifique os valores de , e na equação. A variável representa o coeficiente do termo , a variável representa o coeficiente do termo e a variável representa a constante. Na equação , tem-se que , e . Anote esses valores.
-
Substitua os valores de , e na equação. Agora que conhece os valores das três variáveis, coloque-os na equação da seguinte maneira:
-
Faça os cálculos. Depois de colocar os números, faça os cálculos necessários para simplificar os sinais positivos ou negativos e multiplicar ou elevar ao quadrado os termos remanescentes. Observe a seguir:
-
Simplifique a raiz quadrada. Se o número sob o radical for um quadrado perfeito, você obterá um número inteiro como resultado. De outro modo, reduza-o à versão radical mais simples. Se o número for negativo e você tem certeza de que ele deve ser negativo , as raízes serão complexas. Nesse exemplo, . Você pode escrever que .
-
Resolva para encontrar as respostas positiva e negativa. Se eliminou a raiz quadrada, você pode continuar até ter encontrado os resultados positivo e negativo de x. Agora que possui , você pode escrever duas opções:
-
Resolva para encontrar os valores positivo e negativo. Faça os cálculos:
-
Simplifique. Para simplificar cada resposta, divida-as pelo maior número igualmente divisível por ambos os valores. Divida a primeira fração por 2 e, a seguir, a segunda por 6, e você terá encontrado o valor de .Publicidade
-
Passe todos os termos para um lado da equação. Observe se o ou o são positivos. Observe: [3] X Fonte de pesquisa
-
- Nessa equação, o termo é igual a 2, o termo é igual a -12 e o termo é igual a -9.
-
Passe o termo , a constante, para o outro lado. Ela é o valor numérico que não está acompanhado por uma variável. Passe-a para o lado direito da equação:
-
Divida ambos os lados pelo coeficiente dos termos ou . Se não vier acompanhado de nenhum termo, possuindo apenas um coeficiente igual a 1, esse passo pode ser ignorado. Nessa situação, você terá que dividir todos os termos por 2, da seguinte maneira:
-
Divida por 2, eleve-o ao quadrado e some o resultado em ambos os lados. O termo no exemplo é igual a -6. Veja a seguir:
-
Simplifique ambos os lados. Fatore os termos no lado direito para obter , ou . Some aqueles que estiverem no lado direito para obter , ou resultando em .
-
Encontre a raiz quadrada de ambos os lados . A raiz quadrada de é simplesmente . Você pode escrever a raiz quadrada de como . Logo, .
-
Simplifique o radical e calcule o valor de x. Para simplificar , procure por um quadrado perfeito dentro dos números 27 ou 2 ou, ainda, em seus fatores. O quadrado perfeito 9 pode ser encontrado em 27 porque . Para extrair 9 do radical, tire-o de seu interior e escreva o número 3, sua raiz quadrada, do lado de fora. Deixe o 3 no numerador da fração, sob o radical, uma vez que o fator de 27 não pode ser extraído, e deixe 2 no denominador. A seguir, passe a constante 3 do lado esquerdo da equação para a direita e escreva as duas soluções para :Publicidade
Dicas
- Como se pode ver, o radical não desapareceu completamente. Logo, os termos no numerador não podem ser combinados (porque não são semelhantes). Não há propósito em separar o sinal de mais ou menos. Em vez disso, faz-se a divisão por quaisquer fatores comuns — mas APENAS se o fator for comum às constantes E ao coeficiente do radical.
- Se o número debaixo da raiz quadrada não for um quadrado perfeito, os últimos passos ficarão um pouco diferentes.
- Se for um número par, a fórmula será: .
Publicidade
Referências
Publicidade