Загрузить PDF
Загрузить PDF
В статистике модой во множестве чисел называется число, которое встречается в этом множестве наиболее часто . Мод может быть несколько: если в наборе данных одинаково часто встречаются два или больше разных числа, его называют соответственно бимодальным или мультимодальным — иными словами, все значения, встречающиеся максимальное число раз, образуют моды данного множества. В данной статье описано, как найти моду (моды) множества.
Шаги
-
Запишите числа множества. Моду обычно определяют на наборе статистических данных или множестве численных значений. Таким образом, для нахождения моды вам понадобится набор чисел. Моду сложно определить в уме, если чисел достаточно много, поэтому в большинстве случаев лучше записать все числа или набрать их на компьютере. Если у вас есть карандаш и бумага, достаточно записать все числа. Если же вы работаете за компьютером, удобнее использовать Excel .
- Метод определения моды легче понять на примере. Рассмотрим в данном разделе следующий набор чисел: {18, 21, 11, 21, 15, 19, 17, 21, 17} . В приведенных ниже шагах мы найдем моду этого множества.
-
Расположите числа в порядке возрастания. После того как вы выпишете все числа, полезно переписать их в порядке возрастания. Хотя можно обойтись и без этого, так найти моду будет проще, поскольку одинаковые числа расположатся рядом. Для больших наборов данных это просто необходимо, так как попытка просмотреть неупорядоченный список и подсчитать, сколько раз каждое число появляется в нем, довольно трудоемка и может привести к ошибкам.
- Если вы используете карандаш и бумагу, переписывание поможет вам сэкономить время в дальнейшем. Просмотрите числа, найдите наименьшее значение, вычеркните его из первоначального множества и занесите в новый список. Повторите то же самое для второго, затем для третьего наименьшего числа и так далее, при этом записывайте каждое число столько раз, сколько оно встречается в исходном наборе данных.
- Компьютер предоставляет больше возможностей — например, в большинстве программ для работы с электронными таблицами можно упорядочить список значений от наименьшего к наибольшему всего лишь несколькими щелчками мыши.
- В нашем примере после упорядочения получаем следующую последовательность чисел: {11, 15, 17, 17, 18, 19, 21, 21, 21} .
-
Подсчитайте, сколько раз повторяется каждое число. После того как вы перепишете значения в порядке возрастания, подсчитайте, сколько раз встречается каждое число . Поищите число, которое чаще всего попадается в списке. Если чисел сравнительно немного и они расположены в порядке возрастания, это довольно просто: найдите самую большую группу одинаковых значений и подсчитайте, сколько раз они повторяются.
- Если вы используете карандаш и бумагу, попробуйте записать над каждой группой одинаковых чисел, сколько раз они повторяются. Если вы пользуетесь компьютерной программой для работы с электронными таблицами, можно поступить подобным образом: запишите результаты подсчетов в соседние ячейки или используйте одну из опций для анализа данных.
- В нашем списке ({11, 15, 17, 17, 18, 19, 21, 21, 21}) 11 и 15 встречаются по одному разу, 17 попадается дважды, 18 и 19 встречаются по одному разу, а 21 встречается три раза . Таким образом, в данном наборе значений чаще всего встречается число 21.
-
Определите значение (или значения), которые встречаются наиболее часто. После того как вы подсчитаете, сколько раз встречается каждое число, найдите значения, которые повторяются наибольшее количество раз. Это и есть мода данного множества . Помните, что набор чисел может иметь не одну, а несколько мод . Если в множестве наиболее часто встречаются два числа (то есть они повторяются одинаковое количество раз), такое множество называют бимодальным , если три числа — тримодальным и так далее.
- В нашем множестве ({11, 15, 17, 17, 18, 19, 21, 21, 21}) наиболее часто встречается значение 21, поэтому 21 является модой .
- Если бы кроме 21 нашлось еще одно число, которое также встречается три раза, (например, если бы множество включало еще одно число 17), то оно наряду с 21 было бы модой.
-
Не путайте моду множества чисел с его средним значением и медианой. При статистическом анализе часто рассматривают вместе такие понятия, как среднее значение, медиана и мода. Их легко спутать, так как они имеют схожие названия и иногда их значения совпадают . Однако независимо от того, совпадает или нет мода множества с его медианой или средним значением, следует помнить, что это три абсолютно разных понятия (смотрите ниже).
- Чтобы найти среднее значение множества, следует сложить все числа и поделить на их количество. Для нашего примера ({11, 15, 17, 17, 18, 19, 21, 21, 21}) среднее значение составляет 11 + 15 + 17 + 17 + 18 + 19 + 21 + 21 + 21 = 160/9 = 17,78 . Мы поделили сумму значений на 9, поскольку данное множество состоит из 9 чисел.
- Медиана представляет собой «среднее число», которое разделяет меньшие и бо́льшие значения множества на две равные половины. Например, для нашего набора значений ({11, 15, 17, 17, 18, 19, 21, 21, 21}) медианой является число 18 , так как слева и справа от него стоит по четыре числа. Учтите, что если множество содержит четное количество чисел, оно не имеет единственной медианы. В этом случае медианой обычно считают среднее значение тех двух чисел, которые расположены посередине.
Реклама
-
Множество не имеет моды, если каждое значение встречается в нем одинаковое число раз. Если все значения в данном наборе чисел попадаются одинаковое количество раз, то у этого множества нет моды, поскольку ни одно число не встречается чаще, чем любое другое. Например, моды не имеют те множества, в которые каждое число входит по одному разу. Это же касается тех множеств, в которых каждое число встречается дважды, трижды и так далее.
- Если мы изменим набор чисел в нашем примере на {11, 15, 17, 18, 19, 21}, так чтобы каждое значение встречалось лишь один раз, то он не будет иметь моды. То же верно и для множества, в котором все числа встречаются дважды, например {11, 11, 15, 15, 17, 17, 18, 18, 19, 19, 21, 21}.
-
Помните, что моду нечислового набора данных можно определить точно так же, как для числовых множеств. Как правило, большинство наборов данных являются «количественными», то есть содержат данные в виде чисел. Тем не менее встречаются и такие множества, члены которых выражены не в виде чисел. В таких случаях можно сказать, что «мода» — это то значение, которое встречается чаще всего в наборе данных (как и для числовых множеств). [1] X Источник информации При этом определить моду будет возможно, в то время как медиану или среднее значение — нельзя.
- Предположим, при осмотре небольшого участка земли определили вид каждого растущего на нем дерева. Получился следующий список: {кедр, ольха, кедр, сосна, кедр, кедр, ольха, ольха, сосна, кедр}. Такой набор данных называют номинальным , поскольку входящие в него члены представляют собой названия. В этом случае модой является кедр , так как данное слово встречается чаще других (пять раз), в то время как ольха и сосна встречаются соответственно три и два раза.
- В рассмотренном выше примере невозможно найти среднее значение и медиану, так как набор данных содержит не числа, а названия.
-
При одномодальном симметричном распределении мода, среднее значение и медиана совпадают. Как отмечалось выше, в некоторых случаях мода, медиана и/или среднее значение могут совпадать. В частности, если плотность распределения того или иного набора данных образует идеально симметричную кривую с одной модой (например, гауссиану или колоколообразную кривую), мода, среднее значение и медиана равны друг другу. Плотность распределения отображает относительную частоту определенных значений, поэтому мода будет находиться точно посередине симметричной кривой распределения, так как эта самая высокая точка на графике соответствует наиболее распространенному значению. Поскольку набор данных симметричен, эта точка на графике будет соответствовать также медиане (центральной точке в наборе данных) и среднему значению.
- В качестве примера рассмотрим набор чисел {1, 2, 2, 3, 3, 3, 4, 4, 5}. Если мы отложим эти значения на графике, то получим симметричную кривую, которая достигает максимальной высоты 3 при x = 3 и опускается до 1 при x = 1 и x = 5. Значение 3 встречается чаще всего, поэтому оно является модой . Так как 3 расположено в центре и по обе стороны от него находится четыре числа, оно является также медианой . И наконец, среднее значение данного множества составляет 1 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 5 = 27/9 = 3, то есть число 3 является также средним значением .
- Исключение из этого правила составляют симметричные множества с более чем одной модой — они имеют по одной медиане и среднему значению, с которыми не совпадают несколько мод.
Реклама
Советы
- Набор данных может иметь несколько мод.
- Если все числа встречаются лишь по одному разу, множество не имеет моды.
Реклама
Что вам понадобится
- Бумага, карандаш и ластик
Источники
Реклама