PDF download Загрузить PDF PDF download Загрузить PDF

В статистике абсолютная частота показывает, какое количество раз конкретное значение появляется в наборе данных. В отличие от нее, накопительная частота показывает сумму (или нарастающий итог) всех частот вплоть до текущей точки в наборе данных. Не беспокойтесь, если поначалу это кажется не совсем понятным: возьмите ручку и лист бумаги, и вы быстро во всем разберетесь!

Часть 1
Часть 1 из 2:

Основные сведения

PDF download Загрузить PDF
  1. «Набор данных» — это просто изучаемый вами список числовых значений. Отсортируйте его так, чтобы числа располагались по возрастанию. [1]
    • Пример: предположим, список чисел представляет собой количество книг, которые каждый студент прочитал за последний месяц. После сортировки у вас получился следующий набор чисел: 3, 3, 5, 6, 6, 6, 8.
  2. Частота значения показывает, сколько раз данное значение появляется в наборе данных. Это число можно называть абсолютной частотой, чтобы не путать его с накопительной частотой. Наиболее простой способ заключается в том, чтобы составить таблицу. Вверху левой колонки напишите «Значение» (или укажите, что измеряется данными числами). Вверху второй колонки напишите «Частота». Заполните таблицу для всех значений из списка. [2]
    • Пример : вверху левой колонки напишите «Количество книг», а вверху правой колонки — «Частота».
    • Во второй строке напишите первое количество прочитанных книг, то есть число 3.
    • Посчитайте, сколько раз число 3 встречается в списке данных. В списке есть два числа 3, поэтому во второй строке колонки «Частота» запишите цифру 2.
    • Повторите данную процедуру для всех значений списка, пока не заполните таблицу:
      • 3  |  Ч = 2
      • 5  |  Ч = 1
      • 6  |  Ч = 3
      • 8  |  Ч = 1
  3. Накопительная частота отвечает на вопрос «сколько раз встречается в списке данное значение или меньшая величина ?». Всегда начинайте с наименьшего значения в наборе данных. Поскольку в нашем примере нет меньших значений, для данной величины накопительная частота равна абсолютной. [3]
    • Пример: наименьшее значение равно 3. Количество прочитавших 3 книги студентов составляет 2. Никто из студентов не прочитал меньшее число книг, поэтому накопительная частота равна 3. Впишите это значение в третью колонку таблицы:
      • 3  |  F = 2  |  НЧ=2
  4. Перейдите к следующему значению списка. Выше мы определили, сколько раз встречается в списке наименьшая величина. Чтобы определить накопительную частоту для второго значения списка, необходимо прибавить его абсолютную частоту к накопительной частоте предыдущего значения. Иными словами, следует взять последнюю накопительную частоту и прибавить к ней абсолютную частоту данной величины. [4]
    • Пример:
      • 3  |  Ч = 2  |  НЧ = 2
      • 5  |  Ч = 1   |  НЧ = 2 + 1 = 3
  5. Постепенно продвигайтесь к более высоким числам. При этом каждый раз прибавляйте текущую абсолютную частоту к последней накопительной частоте.
    • Пример:
      • 3  |  Ч = 2  |  НЧ = 2
      • 5  |  Ч = 1  |  НЧ = 2 + 1 = 3
      • 6  |  Ч = 3  |  НЧ = 3 + 3 = 6
      • 8  |  Ч = 1  |  НЧ = 6 + 1 = 7
  6. В итоге вы сложите абсолютные частоты всех значений списка. Конечная накопительная частота должна соответствовать числу значений в списке. Есть два способа проверить, так ли это:
    • Сложите абсолютные частоты всех значений: 2 + 1 + 3 + 1 = 7, в результате у вас получится накопительная частота.
    • Посчитайте число значений в наборе данных. В нашем примере список имел следующий вид: 3, 3, 5, 6, 6, 6, 8. В этом списке семь величин, и итоговая накопительная частота также равна 7.
    Реклама
Часть 2
Часть 2 из 2:

Как использовать накопительную частоту

PDF download Загрузить PDF
  1. Дискретные данные можно посчитать, они не дробятся на более мелкие составляющие. Непрерывные данные часто не поддаются конечному счету, между двумя произвольными величинами обязательно найдутся другие возможные значения. Ниже приведена пара примеров: [5]
    • Количество собак является дискретным множеством. Нет такого понятия, как половина собаки.
    • Глубина снега представляет собой непрерывное множество. Она возрастает постепенно и непрерывно, а не на дискретные величины. Если вы измерите глубину снега в сантиметрах, то точное значение может оказаться, например, 20,6 сантиметра.
  2. Наборы непрерывных данных часто имеют большое количество значений. Если попробовать представить такой набор описанным выше методом, таблица получится слишком длинной и малопонятной. В этом случае удобно разбить данные на отдельные интервалы. Эти интервалы должны быть одинаковой длины (например, 0—10, 11–20, 21–30 и так далее) независимо от того, сколько значений попадает в каждый интервал. Ниже приведена возможная таблица для непрерывного набора данных: [6]
    • Набор данных: 233, 259, 277, 278, 289, 301, 303
    • Таблица (в первой колонке интервал значений, во второй частота, в третьей накопительная частота):
      • 200–250 | 1 | 1
      • 251–300 | 4 | 1 + 4 = 5
      • 301–350 | 2 | 5 + 2 = 7
  3. Постройте линейный график. После того как вы рассчитаете накопительную частоту, возьмите лист миллиметровой бумаги. Отложите по горизонтальной оси (ось x) значения из набора данных, а по вертикальной (ось y) — накопительную частоту, и постройте график. Это значительно облегчит последующие вычисления. [7]
    • Например, если набор данных включает числа от 1 до 8, отложите по горизонтальной оси 8 делений. Над каждым делением отметьте точкой соответствующее ему значение накопительной частоты. Соедините получившиеся точки линией.
    • Если какое-либо значение не встречается, его абсолютная частота составляет 0. В этом случае прибавьте 0 к последней величине накопительной частоты и поставьте точку на том же уровне, что и в предыдущий раз.
    • Поскольку накопительная частота всегда растет с продвижением к б ольшим значениям, с перемещением вправо линия будет оставаться на той же самой высоте или подниматься. Если в какой-то точке линия опустилась вниз, значит, вы допустили ошибку (например, вместо накопительной частоты взяли абсолютную).
  4. Медиана — это значение, расположенное точно посередине набора данных. Половина значений находится выше медианы, а вторая половина расположена ниже нее. Медиану можно найти по графику следующим образом:
    • Посмотрите на последнее значение в самом правом конце графика. Для него величина y соответствует суммарной накопительной частоте, которая равна общему числу точек в наборе данных. Предположим, эта величина равна 16.
    • Умножьте эту величину на ½ и найдите соответствующее значение на оси y . В нашем примере получится 8. Найдите число 8 на оси y .
    • Найдите точку на линии графика, значение y которой соответствует найденной величине. Проведите от цифры 8 на оси y горизонтальную прямую и определите точку ее пересечения с линией графика. Именно эта точка делит набор данных точно пополам.
    • Найдите значение x в данной точке. Проведите из точки вертикальную прямую до пересечения с осью x . Точка пересечения определит медиану для изучаемого набора данных. Например, если получилось 65, значит половина данных расположена ниже 65, а вторая половина лежит выше этого значения.
  5. Квартили делят набор данных на четыре части. Эта процедура очень похожа на определение медианы. Единственное различие заключается в нахождении значений y :
    • Чтобы определить величину y для нижнего квартиля, умножьте максимальное значение накопительной частоты на ¼. В результате вы получите значение x , ниже которого будет лежать ровно ¼ всех данных.
    • Чтобы найти величину y для верхнего квартиля, умножьте максимальное значение накопительной частоты на ¾. В результате вы получите значение x , ниже которого будет лежать ¾, а выше — ¼ всех данных.
    Реклама

Советы

  • С помощью интервалов можно представлять любые большие, в том числе и дискретные наборы данных.
Реклама

Об этой статье

Эту страницу просматривали 83 895 раз.

Была ли эта статья полезной?

Реклама