PDF download 下载PDF文件 PDF download 下载PDF文件

这篇文章教你怎么因式分解三次多项式。我们要学会如何用组合方法和因式分解自由项的方法来解这类问题。

部分 1
部分 1 的 2:

通过组合来分解

PDF download 下载PDF文件
  1. 分组后分开解决。 [1]
    • 比如要分解多项式x 3 + 3x 2 - 6x - 18 = 0。可以把它分解为 (x 3 + 3x 2 )和 (- 6x - 18)
    • 在(x 3 + 3x 2 )中,x 2 是公因子。
    • 在(- 6x - 18)中, -6 是公因数。
    • 把x 2 从第一项提出来,得出x 2 (x + 3)。
    • 把-6 从第二项提出来,得出-6(x + 3)。
  2. [2]
    • 得到(x + 3)(x 2 - 6)。
  3. 若在开根的时候有x 2 ,记得可能有正负两解。 [3]
    • 得出-3、√6和-√63。
    广告
部分 2
部分 2 的 2:

利用自由项

PDF download 下载PDF文件
  1. [4]
    • 比如要分解多项式:x 3 - 4x 2 - 7x + 10 = 0。
  2. 常数"d"是不含如"x"变量的数。
    • 因数就是可以相乘得到另一个数的数。这里,10或 "d"的因数是: 1、 2、 5 和 10。
  3. 当用d的因数替代"x"时,我们要看看哪个符合方程的解。
    • 试试第一个因数 1 ,把x替换掉,得到 (1) 3 - 4(1) 2 - 7(1) + 10 = 0
    • 得到 1 - 4 - 7 + 10 = 0。
    • 因为 0 = 0 是真实的,所以x = 1 是一个解。
    • "x = 1" 等价于"x - 1 = 0" 或 "(x - 1)" 。我们刚刚从每边都减掉了一个1。
  4. "(x - 1)" 是我们的一个根,看看能不能把剩余的解都提出来,一次解决一个多项式。
    • 可不可以把(x - 1) 从 x 3 提出来? 不行,但是可以从第二项借一个 -x 2 ,分解为 x 2 (x - 1) = x 3 - x 2
    • 可不可以把(x - 1) 从剩余部分提出来?不行,要从第三项 -7x 借一个 3x。于是得到-3x(x - 1) = -3x 2 + 3x。
    • 因为 -7x 中提取出一个 3x,第三项变为 -10x ,而我们的常数是10。可以分解吗?可以! -10(x - 1) = -10x + 10。
    • 我们改变了一些变量,让其可以分解出 (x - 1) 。重新整理的方程是这样的: x 3 - x 2 - 3x 2 + 3x - 10x + 10 = 0 ,但和原先 x 3 - 4x 2 - 7x + 10 = 0 没什么差别。
  5. 仔细观察我们在第五步中用(x - 1) 因式分解出的数字:
    • x 2 (x - 1) - 3x(x - 1) - 10(x - 1) = 0。可以重新整理,要再一次分解容易得多: (x - 1)(x 2 - 3x - 10) = 0。
    • 只需要因式分解(x 2 - 3x - 10) ,得到(x + 2)(x - 5)。
  6. 可以把每一项都代回去试试看对不对。
    • (x - 1)(x + 2)(x - 5) = 0 表示解是 1、 -2、5。
    • 把-2 代入等式:(-2) 3 - 4(-2) 2 - 7(-2) + 10 = -8 - 16 + 14 + 10 = 0。
    • 把 5 代入等式:(5) 3 - 4(5) 2 - 7(5) + 10 = 125 - 100 - 35 + 10 = 0。
    广告

小提示

  • 三次多项式是三个一次多项式的积,或者一个无法分解的二次多项式和一个一次多项式的积。后面的情况,我们将整个等式除以一次多项式得到二次多项式。
  • 三次多项式一定能因式分解得出实数解,因为每个三次项都一定有个实根。三次方多项式如x 3 + x + 1含有无理实根,不能被因式分解成含有整数或有理数系数的多项式。虽然可以用立方方程因式分解,这种方程还是不能分解成一个“整数”多项式。 [5]
广告

关于本wikiHow

本页面已经被访问过323,478次。

这篇文章对你有帮助吗?

广告