PDF download Unduh PDF PDF download Unduh PDF

Membagi dengan angka desimal tampak sulit pada awalnya karena tidak ada yang mengajarkan “tabel kali 0,7” pada Anda. Rahasia untuk mengerjakannya adalah dengan mengubah soal pembagian menjadi format yang hanya menggunakan angka bulat. Setelah Anda menuliskan ulang soal dengan cara ini, soal akan menjadi soal pembagian panjang biasa.

Bagian 1
Bagian 1 dari 2:

Menuliskan Soal sebagai Soal Pembagian Biasa

PDF download Unduh PDF
  1. Gunakan pensil jika Anda ingin memperbaiki pekerjaan Anda.
    • Contoh: Berapa 3 ÷ 1,2 ?
  2. Tuliskan titik desimal setelah angka bulat, kemudian tuliskan angka nol setelah titik desimalnya. Lakukan hal ini hingga kedua angka memiliki nilai tempat yang sama di sebelah kanan titik desimal. Hal ini tidak mengubah nilai angka bulatnya.
    • Contoh: Dalam soal 3 ÷ 1,2, angka bulat kita adalah 3. Karena 1,2 memiliki satu nilai tempat di sebelah kanan titik desimal, tulislah 3 sebagai 3,0 sehingga angka ini juga memiliki satu nilai tempat setelah desimal. Sekarang, soal kita menjadi 3,0 ÷ 1,2 .
    • Peringatan: jangan menambahkan nol di sebelah kiri titik desimal! Angka 3 sama dengan 3,0 atau 3,00, tetapi tidak sama dengan 30 atau 300.
  3. Dalam soal-soal pembagian, Anda dapat memindahkan titik-titik desimal, tetapi hanya jika Anda memindahkan titik desimal pada semua angkanya dengan jumlah langkah yang sama. Hal ini memungkinkan Anda untuk mengubah soal menjadi angka bulat.
    • Contoh: Untuk mengubah 3,0 ÷ 1,2 menjadi angka bulat, pindahkan titik desimalnya satu langkah ke kanan. Dengan demikian, 3,0 menjadi 30 dan 1,2 menjadi 12. Sekarang, soal kita menjadi 30 ÷ 12 .
  4. Tulislah soal menggunakan pembagian panjang . Letakkan angka yang dibagi (biasanya angka yang lebih besar) di bawah simbol pembagian panjang. Tulislah angka pembaginya di luar simbol ini. Sekarang, Anda memiliki soal pembagian panjang biasa yang menggunakan angka bulat. Jika Anda menginginkan pengingat mengenai cara melakukan pembagian panjang, bacalah bagian selanjutnya.
    Iklan
Bagian 2
Bagian 2 dari 2:

Menyelesaikan Soal Pembagian Panjang

PDF download Unduh PDF
  1. Mulailah menyelesaikan soal ini sama seperti biasanya, yaitu dengan membandingkan angka pembagi dan digit pertama dari angka yang dibagi. Hitunglah hasil pembagian digit pertama ini dengan angka pembaginya, kemudian tulislah hasilnya di atas digit itu.
    • Contoh : Kita mencoba membagi 30 dengan 12. Bandingkan 12 dengan digit pertama dari angka yang dibagi, yaitu 3. Karena 12 lebih besar dari 3, 3 dibagi 12 sama dengan 0. Tulislah 0 di atas 3 pada baris jawabannya.
  2. Tulislah hasil perkaliannya di bawah angka yang dibagi. Tulislah hasilnya tepat di bawah digit pertama dari angka yang dibagi karena ini adalah digit yang baru saja Anda lihat.
    • Contoh: Karena 0 x 12 = 0, tulislah 0 di bawah 3.
  3. Kurangkan hasil perkalian yang baru saja Anda hitung dari digit yang tepat berada di atasnya. Tulislah jawabannya di baris yang baru, di bawahnya.
    • Contoh: 3 - 0 = 3, jadi tulislah 3 tepat di bawah 0.
  4. Turunkan digit selanjutnya dari angka yang dibagi ke sebelah angka yang baru saja Anda tuliskan.
    • Contoh: Angka yang dibagi adalah 30. Kita sudah melihat angka 3, jadi digit selanjutnya yang harus diturunkan adalah 0. Turunkan angka 0 ke sebelah 3 sehingga menjadi 30 .
  5. Sekarang, ulangi langkah pertama pada bagian ini untuk mencari digit kedua jawaban Anda. Kali ini, bandingkan angka pembaginya dengan angka yang baru saja Anda tuliskan di baris terbawah.
    • Contoh: Berapa hasil bagi dari 30 dengan 12? Jawaban terdekat yang bisa kita dapatkan adalah 2 karena 12 x 2 = 24. Tulislah 2 di tempat kedua pada baris jawaban.
    • Jika Anda tidak yakin dengan jawabannya, cobalah beberapa perkalian hingga Anda menemukan jawaban terbesar yang sesuai. Misalnya, jika perkiraan Anda adalah 3, hitunglah 12 x 3 dan Anda mendapatkan 36. Angka ini terlalu besar karena kita mencoba menghitung 30. Cobalah turunkan satu angka, 12 x 2 = 24. Angka ini sesuai. Jadi, 2 adalah jawaban yang benar.
  6. Ini adalah proses pembagian panjang yang sama seperti yang digunakan di atas, dan untuk soal pembagian panjang apa pun:
    • Kalikan digit baru jawaban Anda dengan angka pembaginya: 2 x 12 = 24.
    • Tulislah hasil perkaliannya di baris yang baru, di bawah angka yang dibagi: Tulislah 24 tepat di bawah 30.
    • Kurangkan baris terbawah dengan baris di atasnya: 30 – 24 = 6. Jadi, tulislah 6 di baris baru di bawahnya.
  7. Jika masih ada digit yang tersisa dalam angka yang dibagi, turunkan digit itu dan lanjutkan menyelesaikan soal dengan cara yang sama. Jika Anda sudah menyelesaikan baris jawaban terakhir, lanjutkan ke langkah selanjutnya.
    • Contoh: Kita baru saja menulis 2 di baris jawaban terakhir. Lanjutkan ke langkah selanjutnya.
  8. Jika angka itu dapat dibagi habis, hasil pengurangan terakhir Anda adalah “0”. Itu artinya, Anda sudah selesai membagi dan Anda mendapatkan jawaban berupa angka bulat. Akan tetapi, jika Anda sudah menyelesaikan baris jawaban terakhir dan masih ada digit yang dapat dibagi, Anda harus “memperpanjang” angka yang dibagi dengan menambahkan titik desimal yang diikuti dengan angka 0. Ingatlah bahwa hal ini tidak mengubah nilai angkanya.
    • Contoh: Kita sudah sampai di baris jawaban terakhir, tetapi jawaban dari pengurangan terakhir kita adalah “6”. Tulislah “6,0” di bawah simbol pembagian panjang dengan menambahkan “,0” ke angka terakhirnya. Tuliskan juga titik desimal di tempat yang sama pada baris jawaban, tetapi jangan tuliskan apa pun setelah itu.
  9. Satu-satunya perbedaan di sini adalah Anda harus menambahkan titik desimal ke tempat yang sama pada baris jawaban. Setelah Anda melakukannya, Anda dapat mencari digit jawaban yang tersisa dengan cara yang sama persis.
    • Contoh: Turunkan 0 yang baru ke baris terakhir sehingga menjadi “60”. Karena 60 dibagi 12 tepat sama dengan 5, tulislah 5 sebagai digit terakhir dari baris jawaban kita. Jangan lupa bahwa kita meletakkan desimal di baris jawaban kita. Jadi, 2,5 adalah jawaban akhir untuk soal kita.
    Iklan

Tips

  • Anda dapat menuliskan ini sebagai sisa (jadi jawaban dari 3 ÷ 1,2 adalah “2 sisa 6”). Akan tetapi, karena Anda bekerja dengan desimal, guru Anda mungkin mengharapkan Anda untuk mengerjakan bagian desimal dari jawabannya.
  • Jika Anda mengikuti cara pembagian panjang dengan benar, Anda akan selalu memiliki titik desimal di posisi yang benar, atau tidak memiliki titik desimal sama sekali jika angkanya dapat dibagi habis. Jangan mencoba menebak-nebak tempat desimalnya. Tempat desimal sering kali berbeda dengan tempat desimal pada angka awal Anda.
  • Jika soal pembagian panjang tidak berakhir untuk waktu yang lama, Anda dapat berhenti dan membulatkannya ke angka terdekat . Misalnya, untuk menyelesaikan 17 ÷ 4,2, hitung saja hingga 4,047… dan bulatkan jawaban Anda menjadi “sekitar 4,05”.
  • Ingatlah istilah-istilah pembagian Anda: [1]
    • Angka yang dibagi adalah angka yang akan dibagi.
    • Angka pembagi adalah angka yang digunakan untuk membagi.
    • Hasil bagi adalah jawaban dari soal pembagian matematika.
    • Keseluruhan: Angka yang dibagi ÷ Angka pembagi = Hasil bagi.
Iklan

Peringatan

  • Ingatlah bahwa 30 ÷ 12 akan memberikan jawaban yang sama seperti 3 ÷ 1,2. Jangan mencoba “membetulkan” jawaban Anda setelah memindahkan desimalnya ke belakang. [2]
Iklan

Tentang wikiHow ini

Halaman ini telah diakses sebanyak 256.329 kali.

Apakah artikel ini membantu Anda?

Iklan