PDF download Download Article PDF download Download Article

The null space of a matrix is the set of vectors that satisfy the homogeneous equation Unlike the column space it is not immediately obvious what the relationship is between the columns of and

Every matrix has a trivial null space - the zero vector. This article will demonstrate how to find non-trivial null spaces.

  1. Consider a matrix with dimensions of . [1] Below, your matrix is
  2. to reduced row-echelon form (RREF). [2] For large matrices, you can usually use a calculator. Recognize that row-reduction here does not change the augment of the matrix because the augment is 0.
    • We can clearly see that the pivots - the leading coefficients - rest in columns 1 and 3. That means that and have their identifying equations. The result is that are all free variables.
    Advertisement
  3. [3]
  4. [4]
    • Let Then and
  5. [5] The weights will be the free variables. Because they can be anything, you can write the solution as a span.
    • This null space is said to have dimension 3, for there are three basis vectors in this set, and is a subset of for the number of entries in each vector.
    • Notice that the basis vectors do not have much in common with the rows of at first, but a quick check by taking the inner product of any of the rows of with any of the basis vectors of confirms that they are orthogonal.
  6. Advertisement

Community Q&A

Search
Add New Question
  • Question
    How do you find the basis for the column space of a matrix?
    Alphabet
    Community Answer
    Row reduce the matrix and pick the columns that have pivot points. Let us use the matrix A: 1 3 5, 5 6 7, 10 12 14. If we now reduce it, we get the following matrix: 1 0 -1, 0 1 2, 0 0 0. The first two columns have pivot positions, but the last column does not. So we go back to the original matrix A and the first two columns of the original matrix A form the basis of the column space.
Ask a Question
      Advertisement

      Video

      Tips

      • For an matrix if then there will always be a non-trivial null space of because there will not be a pivot in every column (and therefore will have free variables).
      • Remember that for a matrix is always a subset of
      • The dimension of the null space comes up in the rank theorem, which posits that the rank of a matrix is the difference between the dimension of the null space and the number of columns.
      Submit a Tip
      All tip submissions are carefully reviewed before being published
      Name
      Please provide your name and last initial
      Thanks for submitting a tip for review!
      Advertisement

      About This Article

      Thanks to all authors for creating a page that has been read 224,939 times.

      Reader Success Stories

      • Jane Eve

        Mar 28, 2022

        "The article is of great help. It is simple and detailed!"
      Share your story

      Did this article help you?

      Advertisement