Descargar el PDF
Descargar el PDF
Un hexágono es un polígono de seis lados. Si un hexágono es regular, tendrá seis lados iguales y seis apotemas. La apotema es el segmento que une el centro de un polígono con el punto medio de cualquiera de sus lados. Normalmente es necesario conocer la longitud de la apotema para calcular el área de un hexágono. [1] X Fuente de investigación Conociendo la longitud del lado del hexágono, podrás calcular la longitud de su apotema.
Pasos
Método 1
Método 1 de 2:
Utilizar el teorema de Pitágoras (con la longitud del lado o el radio)
-
Divide el hexágono en seis triángulos congruentes y equiláteros. [2] X Fuente de investigación Para hacerlo, dibuja una línea que conecte cada vértice o punto con el vértice opuesto.
-
Elige un triángulo y marca la longitud de su base. Esta longitud será igual a la de cualquiera de los lados del hexágono.
- Por ejemplo, supongamos que tienes un hexágono cuyo lado mide 8 cm. La base de cada triángulo equilátero, entonces, será también de 8 cm.
-
Forma dos triángulos rectángulos. Para hacerlo, dibuja una línea perpendicular a la base del triángulo equilátero desde su vértice superior. Esta línea cortará la base del triángulo en dos (y, por lo tanto, será la apotema del hexágono). Marca la longitud de la base de uno de los dos triángulos rectángulos.
- Por ejemplo, si la base del triángulo equilátero es de 8 cm, cuando lo dividas en dos triángulos rectángulos, cada uno de estos tendrá una base de 4 cm.
-
Escribe la fórmula del teorema de Pitágoras. La fórmula es , donde es igual a la longitud de la hipotenusa (el lado opuesto al ángulo recto), y y son las longitudes de los otros dos lados del triángulo.
- Por ejemplo, si un triángulo rectángulo tiene una hipotenusa de cm, un cateto de cm, y otro cateto de cm ( ), según el teorema de Pitágoras, , lo cual se puede comprobar haciendo los cálculos: .
-
Introduce la longitud de la base del triángulo rectángulo en la fórmula. Sustituye la por la base.
- Por ejemplo, si la longitud de la base es de 4 cm, la fórmula quedará así: .
-
Introduce la longitud de la hipotenusa en la fórmula. Conoces la longitud de la hipotenusa porque conoces la longitud del lado del hexágono. La longitud del lado de un hexágono regular es igual a su radio. [3] X Fuente de investigación El radio es la línea que conecta el punto central de un polígono con cualquiera de sus vértices. [4] X Fuente de investigación Observarás que la hipotenusa del triángulo rectángulo también es un radio del hexágono y, por lo tanto, se corresponderá igualmente con la longitud del lado.
- Por ejemplo, si la longitud del lado del hexágono es de 8 cm, la longitud de la hipotenusa del triángulo rectángulo será también de 8 cm. Por lo tanto, la fórmula quedará así: .
-
Eleva los valores de la fórmula al cuadrado. Recuerda que elevar un número al cuadrado significa multiplicarlo por sí mismo.
- Siguiendo con el ejemplo, si elevas los valores al cuadrado, la fórmula quedará así: .
-
Aísla la variable desconocida. Para hacerlo, resta el valor de al cuadrado de ambos lados de la ecuación.
- Por ejemplo:
- Por ejemplo:
-
Despeja . Para hacerlo, halla la raíz cuadrada de los valores que hay a cada lado de la ecuación. De esta forma, obtendrás la longitud del lado que falta del triángulo, que se corresponderá con la longitud de la apotema del hexágono.
- Por ejemplo, con la ayuda de la calculadora puedes resolver: . Por lo tanto, la longitud desconocida del triángulo rectángulo y la longitud de la apotema del hexágono es igual a 6,93 cm.
Anuncio
Método 2
Método 2 de 2:
Utilizar reglas de trigonometría (con la longitud del lado o el radio)
-
Escribe la fórmula para hallar la apotema de un polígono regular. La fórmula es , donde corresponde a la longitud del lado del polígono y es el número de lados que tiene. [5] X Fuente de investigación
-
Introduce la longitud del lado en la fórmula. Acuérdate de sustituir la variable por este valor.
- Por ejemplo, si tenemos un hexágono con lado de longitud igual a 8 cm, la fórmula quedará así: .
-
Introduce el número de lados en la fórmula. Un hexágono tiene 6 lados. Acuérdate de sustituir la variable por este valor.
- Por ejemplo: .
-
Completa la operación entre paréntesis. Hallarás los grados que debes utilizar para calcular la tangente.
- Por ejemplo, , por lo que la fórmula quedará así: .
-
Halla la tangente. Para hacerlo, utiliza una calculadora o una tabla de trigonometría. [6] X Fuente de investigación
- Por ejemplo, la tangente de 30 es 0,577 aproximadamente, por lo que la fórmula quedará así: .
-
Multiplica la tangente por 2 y, después, divide la longitud del lado por el número resultante. De esta forma, hallarás la longitud de la apotema del hexágono.
- Por ejemplo:
Por lo tanto, la apotema de un hexágono regular cuyo lado mide 8 cm es igual a 6,93 cm aproximadamente.
Anuncio - Por ejemplo:
Consejos
- La palabra "apotema" puede referirse tanto al segmento en sí como a la longitud de ese segmento.
- Recuerda que este método solo funciona con hexágonos regulares. Los hexágonos irregulares no tienen apotema.
Anuncio
Referencias
- ↑ https://www.mathsisfun.com/geometry/regular-polygons.html
- ↑ http://mathforum.org/library/drmath/view/54840.html
- ↑ http://www.vitutor.com/geometry/plane/apothem.html
- ↑ https://www.mathsisfun.com/definitions/radius-polygon-.html
- ↑ http://www.mathopenref.com/apothem.html
- ↑ http://www.csuchico.edu/~jhudson/pdf/trigtabl.pdf
Acerca de este wikiHow
Esta página ha recibido 676 839 visitas.
Anuncio