تنزيل المقال تنزيل المقال

حينما تقابل معادلة تكعيبية لأول مرة (والتي تأخذ الصورة ax 3 + bx 2 + cx + d = 0)، قد يبدو من الصعب حلها بشكل أو بآخر. إلا أن طريقة حل المعادلات التكعيبية عُرفت منذ قرون مضت، عندما اكتشفها في القرن الخامس عشر الميلادي عالمي الرياضة الإيطالييْن "نيكولو تارتجاليا" و"جيرولامو كاردانو". إن طريقة حل المعادلات التكعيبية واحدة من أوائل الصيغ التي لم يعرفها الإغريق والرومان القدماء. قد يكون حل المعادلات التكعيبية صعبًا نسبيًا، لكن بفضل استخدام الطريقة الملائمة (والمعرفة الأساسية الكافية) يمكن حل أصعب المعادلات.

طريقة 1
طريقة 1 من 3:

الحل باستخدام الصيغة التربيعية

تنزيل المقال
  1. كما لاحظت أعلاه، فإن المعادلات التكعيبية تأخذ الصورة ax 3 + bx 2 + cx + d = 0. b, c, وقد تكون قيمة b تساوي صفر دون أن يؤثر ذلك على كون المعادلة تربيعية من عدمه، مما يعني أنه ليس بالضرورة أن تحتوي المعادلة التكعيبية على جميع حدود bx 2 ، cx ، أو d لكي تكون تكعيبية. لنبدأ باستخدام الطريقة الأسهل نسبيًا لحل المعادلات التكعيبية، تحقق لمعرفة ما إذا كان يوجد ثابت بالمعادلة التكعيبية التي تقوم بحلها (أي قيمة d ). إذا كان لا يوجد بها ثابت، يمكنك استخدام طريقة حل المعادلة التربيعية لإيجاد حلول المعادلة بالقيام ببعض الخطوات الرياضية البسيطة.
    • إذا حدث العكس وكانت المعادلة تحتوي على ثابت، فسوف تحتاج إلى استخدام طريقة أخرى للحل. انظر الطرق البديلة أدناه.
  2. بما أن المعادلة لا تحتوي على ثابت، فإن جميع حدود المعادلة بها متغير x . مما يعني أنه يمكن أخذ x كعامل مشترك في المعادلة وتبسيطها. قم بذلك واكتب المعادلة في الصورة x ( ax 2 + bx + c ).
    • لنقل على سبيل المثال أن المعادلة التكعيبية في البداية هي 3 x 3 + -2 x 2 + 14 x = 0. بأخذ x كعامل مشترك، نحصل على x (3 x 2 + -2 x + 14) = 0 .
  3. قد تكون لاحظت أن الجزء الموجود داخل الأقواس في المعادلة الجديدة يشبه صورة المعادلة التربيعية ( ax 2 + bx + c). مما يعني أنه يمكننا إيجاد القيم التي تكون عندها هذه المعادلة التربيعية تساوي صفر عن طريق إدخال a و b و c في الصيغة التربيعية ({- b +/-√ ( b 2 - 4 ac )}/2 a ). قم بذلك لإيجاد حلين من حلول المعادلة التكعيبية.
    • في المثال الذي طرحناه، سوف ندخل قيم a و b و c (3، 2، 14 على التوالي) في المعادلة التربيعية كالآتي:
      {- b +/-√ ( b 2 - 4 ac )}/2 a
      {-(-2) +/-√ ((-2) 2 - 4(3)(14))}/2(3)
      {2 +/-√ (4 - (12)(14))}/6
      {2 +/-√ (4 - (168)}/6
      {2 +/-√ (-164)}/6
    • الحل الأول:
      {2 + √(-164)}/6
      {2 + 12.8 i }/6
    • الحل الثاني:
      {2 - 12.8 i }/6
  4. في حين أن المعادلة التربيعية لها حلين، فإن المعادلة التكعيبية لها ثلاثة حلول. لقد حصلت بالفعل على حلين من الثلاثة حلول، وهما ما نتجا عن جزء المعادلة التربيعية الموجودة داخل الأقواس. إذا كانت معادلتك قابلة لتطبيق طريقة الحل باستخدام العامل المشترك فإن الحل الثالث سوف يكون دومًا 0 . تهانينا! لقد قمت للتو بحل معادلة تكعيبية.
    • يرجع سبب نجاح هذه الطريقة للحقيقة الأساسية أن حاصل ضرب أي رقم في صفر يساوي دومًا صفر . عندما تقوم بأخذ عامل مشترك من معادلة في الصورة x ( ax 2 + bx + c ) = 0، فإنك تقوم بقسم المعادلة إلي نصفين: النصف الأول هو المتغير x على اليسار والنصف الآخر هو جزء المعادلة التربيعية داخل الأقواس. إذا كان أي الطرفين يساوي صفر فإن المعادلة بأكملها تساوي صفر. لذا فإن كلا حلي الجزء التربيعي في الأقواس والتي تجعل ذلك الطرف يساوي صفر هي حلول للمعادلة التكعيبية، والتي تساوي صفر بنفسها مما يجعل النصف الأيسر يساوي صفر أيضًا.
طريقة 2
طريقة 2 من 3:

إيجاد حلول صحيحة باستخدام قوائم العوامل

تنزيل المقال
  1. الطريقة المشروحة أعلاه ملائمة لأنك لن تحتاج لتعلم مهارات رياضية جديدة لحلها، لكنها لن تكون دومًا كافية لمساعدتك في حل المعادلات التكعيبية. إذا كانت معادلتك في الصورة ax 3 + bx 2 + cx + d = 0 وكان الحد d لا يساوي صفرًا، فإن حيلة العامل المشترك لن تكون مفيدة، لذا فسوف تحتاج إلى استخدام إحدى الوسيلتين الموجودتين في هذا الجزء والجزء الذي يليه.
    • لنقل على سبيل المثال أن المعادلة المعطاة هي 2 x 3 + 9 x 2 + 13 x = -6. في هذه الحالة فإن وضع صفر في الطرف الأيمن من علامة يساوي يتطلب منا أن نقوم بإضافة 6 لكلا الطرفين. في المعادلة الجديدة يكون 2 x 3 + 9 x 2 + 13 x + 6 = 0, d = 6، وبالتالي لا يمكننا استخدام حيلة العامل المشترك المذكورة أعلاه.
  2. لحل المعادلة التكعيبية، ابدأ بإيجاد معاملات a (معاملات الحد x 3 term) و d (الثابت في نهاية المعادلة). كتذكير سريع فإن المعاملات هي الأرقام التي يمكن ضربها للحصول على رقم آخر. على سبيل المثال، بما أنه يمكنك الحصول على 6 بضرب 6 × 1 و 2 × 3، فإن 1، 2، 3، 6 هي معاملات الرقم 6.
    • في المثال الذي طرحناه، a = 2 و d = 6 . إن معاملات 2 هي 1 و 2 ومعاملات 6 هي 1، 2، 3، 6.
  3. ثم اكتب قائمة القيم التي ستحصل عليها بقسمة كل معامل من معاملات a بمعامل من معاملات d . سوف ينتج ذلك عادةً العديد من الكسور والأرقام الجديدة. إن الحلول الصحيحة للمعادلة التكعيبية هي أحد تلك الأرقام الجديدة بالموجب أو بالسالب.
    • في المعادلة، بقسمة معاملات a (1, 2) على معاملات d (1, 2, 3, 6) نحصل على القائمة 1، 1/2، 1/3، 1/6، 2، 2/3. ثم نضيف السوالب إلى تلك القائمة لتكتمل: 1، -1، 1/2، -1/2، 1/3، -1/3، 1/6، -1/6، 2، -2، 2/3، -2/3 . إن حلول المعادلة التكعيبية الصحيحة متواجدة في هذه القائمة.
  4. بعد أن تقوم بوضع قائمة القيم. يمكنك إيجاد الحلول الصحية للمعادلة التكعيبية من خلال وضع كل حل صحيح في المعادلة وإيجاد أيهم يساوي الصفر. وإذا لم ترغب في إهدار الوقت، يوجد طريقة أسرع قليلًا تعتمد على طريقة القسمة التركيبية.في البداية، قم بقسمة القيم الصحيحة تركيبيًا على معاملات a و b و c و d الأصلية في المعادلة التكعيبية. إذا كان الباقي يساوي صفرًا، فإن القيمة المدخلة هي إحدى حلول المعادلة التكعيبية.
    • إن القسمة التركيبية مسألة معقدة. قم بالبحث جيدًا عن معلومات أكثر. إليك مثال على كيفية إيجاد أحد حلول المعادلة التكعيبية باستخدام القسمة التركيبية.
      -1 | 2 9 13 6
      __| -2-7-6
      __| 2 7 6 0
      حيث أننا حصلنا على باقي قسمة يساوي 0، فإننا نعرف أن أحد حلول المعادلة التكعيبية الصحيحة هو -1 .
طريقة 3
طريقة 3 من 3:

استخدام طريقة "المميز"

تنزيل المقال
  1. سوف نحتاج لإيجاد حلول المعادلة بهذه الطريقة، سوف نتعامل بشكل كبير مع معاملات حدود المعادلة. لذا فإنه من الحكمة تسجيل قيم a و b و c و d قبل البدء لكي لا تنسى أحدًا منها.
    • على سبيل المثال، بالنسبة للمعادلة x 3 - 3 x 2 + 3 x - 1، سوف نقوم بكتابة a = 1 و b = -3 و c = 3 و d = -1. لا تنسَ أنه عندما لا يمتلك المتغير x معامل فإننا نفترض أن معامله 1.
  2. إن طريقة المميز لإيجاد حلول المعادلة التكعيبية تتطلب بعض الرياضيات المعقدة، لكن إذا اتبعت العملية بحذر، فسوف تجد أنه طريقة ممتازة للغاية لإيجاد حلول المعادلات التكعيبية التي يصعب حلها بالطرق الأخرى. للبدء، قم بإيجاد Δ0، أول الكميات الهامة العديدة التي سنحتاجها، بإدخال القيام الملائمة في صيغة b 2 - 3 ac .
    • في المثال الذي طرحناه، سوف نقوم بالحل كالآتي:
      b 2 - 3 ac
      (-3) 2 - 3(1)(3)
      9 - 3(1)(3)
      9 - 9 = 0 = Δ0
  3. إن القيمة الثانية الهامة التي سنحتاجها Δ1 سوف تتطلب القليل من الجهد، لكنها قائمة في الأساس على نفس طريقة حساب Δ0. قم بإدخال القيم الملائمة في الصيغة 2 b 3 - 9 abc + 27 a 2 d لحساب قيمة Δ1.
    • في المثال الذي طرحناه، سوف نقوم بالحل كالآتي:
      2(-3) 3 - 9(1)(-3)(3) + 27(1) 2 (-1)
      2(-27) - 9(-9) + 27(-1)
      -54 + 81 - 27
      81 - 81 = 0 = Δ1
  4. بعد ذلك، سوف نحسب مميز المعادلة التكعيبية من قيم Δ0 وΔ1. إن المميز بكل بساطة هو رقم يعطينا معلومات عن جذور المعادلة متعددة الحدود (قد تكون لاحظت بشكل غير واعي مميز المعادلة التربيعية: b 2 - 4 ac ). في حالة المعادلة التكعيبية، إذا كان المميز موجبًا، فإن المعادلة لها ثلاث حلول حقيقية. إذا كان المميز يساوي صفر، فإن المعادلة لها حل أو حلين حقيقين وبعض تلك الحلول مركبة. إذا كان المميز سالبًا، فإن المعادلة لها حل واحد فقط. (المعادلة التكعيبية لها حل واحد حقيقي على الأقل، لأن المنحنى سوف يمر دومًا بالمحور x مرة واحدة على الأقل).
    • في المثال الذي طرحناه، بما أن كلًا من Δ0 و Δ1 = 0، فإن إيجاد Δ سيكون سهلًا للغاية، سوف نقوم بكل بساطة بالحل كالآتي:
      Δ1 2 - 4Δ0 3 ) ÷ -27 a 2
      (0) 2 - 4(0) 3 ) ÷ -27(1) 2
      0 - 0 ÷ 27
      0 = Δ لذا فإن المعادلة لها حل أو حلين.
  5. إن القيمة الأخيرة الهامة التي نحتاج لحسابها هي C . إن هذه القيمة الهامة تسمح لنا بإيجاد الجذور الثلاثة. قم بحلها بشكل طبيعي، باستبدال Δ1 و Δ0 حسب حاجتك.
    • في المثال الذي طرحناه، سوف نقوم بإيجاد قيمة C كالآتي:
      3 √(√((Δ1 2 - 4Δ0 3 ) + Δ1)/ 2)
      3 √(√((0 2 - 4(0) 3 ) + (0))/ 2)
      3 √(√((0 - 0) + (0))/ 2)
      0 = C
  6. إن الجذور (الحلول) للمعادلة التكعيبية المعطاة في الصيغة ( b + u n C + (Δ0/ u n C )) / 3 a ، حيث أن u = (-1 + √(-3))/2 و n تساوي أحد القيم 1، 2، 3. قم بإدخال القيم حسب حاجتك لحل المعادلة. يتطلب ذلك العديد من الخطوات الرياضية، لكنك في النهاية سوف تحصل على ثلاثة حلول!
    • في المثال الذي طرحناه، يمكننا الحل عن طريق اختبار الإجابة عندما تكون قيمة n تساوي (1، 2، 3). إن الحلول التي نحصل عليها من تلك الاختبارات هي حلول محتملة للمعادلة التكعيبية؛ أي حل يعطي القيمة صفر عندما يتم التعويض به في المعادلة هو حل صحيح. على سبيل المثال إذا حصلنا على حل قيمته 1 لأحد الاختبارات، حيث أن التعويض ب 1 في المعادلة x 3 - 3 x 2 + 3 x - 1 يعطي قيمة تساوي 0 فإن 1 هو أحد حلول المعادلة التكعيبية.

المزيد حول هذا المقال

تم عرض هذه الصفحة ٥٦٬٦٥٢ مرة.

هل ساعدك هذا المقال؟